Transmural Myocardial Deformation in the Canine Left Ventricle Normal in Vivo Three-Dimensional Finite Strains

نویسندگان

  • Lewis K. Waldman
  • Y. C. Fung
  • James W. Covell
چکیده

To examine transmural finite deformation in the wall of the canine left ventricle, closely spaced columns of lead beads were implanted at a single site on the left ventricular free wall. The three-dimensional coordinates of these myocardial markers were obtained with highspeed biplane cineradiography. Any four noncoplanar markers forming small tetrahedral volumes («*0.1 cc) were used to calculate finite normal and shear strains with respect to a cardiac coordinate system at end diastole. Due to the symmetry of the finite strain tensor, the algebraic eigenvalue problem could be solved to compute principal strains and the directions of the principal axes of deformation with respect to the reference coordinates. An examination of the principal strains in a number of tetrahedra in five animals indicates that deformation increases with depth beneath the epicardium. For example, the transmural variation of principal shortening strain averages —0.014 ± 0.009 per 10% increment in thickness from epicardium to endocardium. Furthermore, shortening and thickening strains at midwall and deeper are too large (0.10 to 0.40) to be described accurately by infinitesimal theory. These strains are often accompanied by substantial in-plane and transverse shears which are not predicted by typical membrane or shell theories, indicating that these theories must be applied with caution when computing indices of regional ventricular performance. The directions of the principal axes of shortening vary substantially less than the fiber direction varies across the wall (20°-40° compared with 100°-140° for fiber direction), supporting the concept that there are substantial interactions between neighboring fibers in the left ventricular wall. (Circ Res 57: 152-163, 1985)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on "Transmural myocardial deformation in the canine left ventricle: normal in vivo three dimensional finite strains".

To examine transmural finite deformation in the wall of the canine left ventricle, closely spaced columns of lead beads were implanted at a single site on the left ventricular free wall. The three-dimensional coordinates of these myocardial markers were obtained with high-speed biplane cineradiography. Any four noncoplanar markers forming small tetrahedral volumes (less than or equal to 0.1 cc)...

متن کامل

Transmural myocardial deformation in the ischemic canine left ventricle.

The myocardium is a complex three-dimensional structure consisting of myocytes interconnected by a dense collagen weave that courses in different directions. Regional ischemia can be expected to produce complex changes in ventricular deformation. In the present study, we examined the effects of ischemia on two- and three-dimensional finite strains during acute transmural myocardial ischemia in ...

متن کامل

Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle

Recent morphological studies have demonstrated a laminar (sheet) organization of ventricular myofibers. Multiaxial measurements of orthotropic myocardial constitutive properties have not been reported, but regional distributions of three-dimensional diastolic and systolic strains relative to fiber and sheet axes have recently been measured in the dog heart by Takayama et al. [30]. A three-dimen...

متن کامل

Transmural mechanics at left ventricular epicardial pacing site.

Left ventricular (LV) epicardial pacing acutely reduces wall thickening at the pacing site. Because LV epicardial pacing also reduces transverse shear deformation, which is related to myocardial sheet shear, we hypothesized that impaired end-systolic wall thickening at the pacing site is due to reduction in myocardial sheet shear deformation, resulting in a reduced contribution of sheet shear t...

متن کامل

Transmural mechanics at a left ventricular epicardial pacing site

Running Title: Transmural mechanics at a LV epicardial pacing site ABSTRACT (250 words) Left ventricular (LV) epicardial pacing acutely reduces wall thickening at the pacing site. Because LV epicardial pacing also reduces transverse shear deformation, which is related to myocardial sheet shear, we hypothesized that impaired end-systolic wall thickening at the pacing site is due to reduction in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005